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Abstract. The predictability problem is discussed in turbulent fluids and in spatially extended 
systems. We perform a numerical analysis of the spatial propagation of a small pemrbation 
initially IchAized at a point of a one-dimensional lattice of coupled maps, where the interactions 
can be either local or non-local in space. In both cases, the nonlinear terms in the dynamics 
of the penurbation cannot be neglected and the predictability problem cannot be reduced to 
the linearized evolution equations. Only for non-local interactions the predictability time is 
proportional to the inverse Lyapunov exponent A, as in dynamical systems with few degrees of 
+doom. For local interactions it is proponional to the size of the system and is practically 
independent of the chaoticity degree A. 

The possibility of making predictions on the future state of a dynamical system has severe 
limitations which stems from the presence of deterministic chaos, in the sense of sensitive 
dependence on initial conditions (Lorenz 1963). The common belief is that the predictability 
time should be proportional to the inverse of the typical rate of divergence of nearby 
trajectories, as a consequence of the following considerations. Let us consider a dynamical 
system given by a map 

X { ( t  + 1) = &(%(t)) i = 1 . '. , , N  (1) 

where the time f is discrete and z = (XI. . '.xN). As long as a perturbation 8% is small 
enough, its behaviour is ruled by the linearized evolution equations for the tangent vector z 

In a similar way, one can consider the flow given by the differential equations dxi/dt = 
Gi(x) and dzi/dr = C~dGi/dr,I,(,) z j ( t ) .  

In chaotic systems, one has Iz(t)[ - exp(h t )  (where A is the maximum Lyapunov 
exponent) for almost all initial conditions, when t + 00. It follows that, if the maximum 
admitted error on the knowledge of the state of the system is 6- and the initial error is 
$, the future can be predicted up to a time 

This simple remark is important since it implies that in dynamical systems the forecasting 
is mainly limited by the chaotic nature of the evolution and very weakly by the resolution 
of the measurements. The gain obtained by achieving finer resolutions is only logarithmic 
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and can be safely ignored for practical purposes. The problem of predictability in  low- 
dimensional systems is thus solved in the context of the theory of chaotic dynamics by 
considering the evolution of an infinitesimal perturbation on the original flow. 

However, it is not obvious that the predictability time can be expressed in terms of the 
Lyapunov exponent in partial differential equations or in dynamical systems with a large 
number of degrees of freedom, where one should consider not only the rate of divergence of 
nearby trajectories, but also the direction in the phase space where a perturbation grows. In 
particular, for spatially extended systems the propagation in space of a perturbation might 
be unrelated to the chaoticity degree of the global dynamical system. 

This point can be easily understood and analysed in the context of coupled maps on a 
lattice. If the interactions among the maps are local, the propagation of a perturbation is not 
directly related to the Lyapunov exponent. One expects that it propagates from one lattice 
point toward the boundaries at the ‘sound’ speed. It is important to stress that this is not 
the case for differential equations, where one cannot exclude a spreading of a perturbation 
in an infinitesimal time, even for local interactions. 

On the other hand, we shall see that for non-local interactions the situation is even less 
clear and should be discussed case by case. 

Let us briefly review the different reasons for a failure of the relation (3) between 
predictability and maximum Lyapunov exponent in a generic dynamical system: 
(a) The Lyapunov exponent 1 is a global quantity: it measures the average exponential 

rate of divergence of nearby trajectories. In general there are finite-time fluctuations of 
this rate and it is possible to define an ‘instantaneous’ rate, called effective Lyapunov 
exponent (Paladin and Vulpiani 1987) 

G Paladin and A Vulpiani 

which depends (for finite delay time 5 )  on the particular point of the trajectory x ( t )  
where the perturbation is performed. In the same way, the predictability time T, 
fluctuates, following the y-variations. 

(b) In dynamical systems with many degrees of freedom, the interactions among different 
parts of the system play an important role in the growth of the perturbation. The 
knowledge of the statistics of the effective Lyapunov exponent is insufficient and one 
has to analyse the behaviour of the tangent vector z(t) ,  which gives the direction along 
which an infinitesimal perturbation grows (see e.g. Pikovsky 1993). Moreover, one is 
often interested in the case of a perturbation concentrated on certain degrees of freedom 
(e.g. small-length scales in weather forecasting), and of a prediction on the evolution 
of other degrees of freedom (e.g. large-length scales). In the framework of a linear 
approximation for the evolution of 6 x ,  the relevant quantity is the time TR, necessary 
for the tangent vector to relax on the time-dependent eigenvector e( t )  of the stability 
matrix, corresponding to the maximum Lyapunov exponent. It is worth stressing that 
a generic tangent vector z( t )  relaxes exponentially fast to e(t) (Orszag et al 1987). 
When the perturbations on a system are small enough, and a linear approach can be 
used, nonlinear terms of type Sxi 6x, are negligible in the evolution equation of Sx, and 
one has 

In conclusion, the mechanism of transfer of the error 6x through the degrees of freedom 
of the system could be more important than the rate of divergence of nearby trajectories. 
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(c) The nonlinear terms in the evolution equations of the perturbation 6x may have a key 
role in the predictability problem, so that the behaviour of Se is not determined by the 
evolution of the tangent vector x.  

In one of the first attempts to formulate a theory of the predictability in turbulent flows, 
Lorenz takes into account (b) and (c), on physical grounds. It is instructive to briefly 
discuss his phenomenological ideas (Lorenz 1969, Leith and Kraichnan 1972, Lilly 1979). 
In the energy cascade for three-dimensional turbulence it is assumed that the time r(k) 
necessary for a perturbation at wavenumber 2k in order to induce a complete uncertainty 
on the velocity field on scales corresponding to wavenumber k. is proportional to the eddy 
turn-over time at scale k. By using dimensional arguments, one gets 

where Vk is the typical velocity difference on length scale k-'. The smallest characteristic 
scale of the system is the Kolmogorov length q - kx-l, where viscosity overwhelms the 
nonlinear transfer of energy. As a consequence, the predictability time, understood as the 
time necessary for an incertitude on the Kolmogorov length to propagate up to the largest 
characteristic length scale Lo - ko-' (the scale of the energy containing eddies) is 

w 

T p  = ~ ( 2 "  kK) 
n d l  

where N = ln(kK/b) = In(Lo/q). In the Kolmogorov theory K41, the eddy turn-over 
time follows the law r(k) - k-'13 and the Kolmogorov length vanishes as a power of the 
Reynolds number Re, q - R C 3 I 4 .  Lorenz thus postulates the existence of an inverse 
cascade of the error in N - In Re steps. The predictability time obtained by (6) is 
proportional to the turn-over time of the energy containing eddies, 

Tp LO / VO (7) 

and therefore is independent of Reynolds. This happens because the characteristic lifetimes 
r ( t  - k-', associated with the eddy structures of lengths e << LO are negligible with respect 
to the 'macroscopic' time scale LO/VO. 

Relation (7) is questionable, however, since the Lorenz approach involves many 
characteristic times and assumes a precise physical mechanism for the inverse cascade. In 
fact, a numerical analysis of a simplified dynamical system (the GOY shell model) (Gledzer 
1973, Ohkitani and Yamamada 1987, 1988) for the turbulence cascade, shows that the 
predictability time of the model is proportional to the inverse of the maximum Lyapunov 
exponent (Crisanti et al 1993a, b). In turbulence, one expects that A-' is given by the 
smallest characteristic time r(kK). so that in the K41 theory h - Re''* (Ruelle 1979) while 
in the multifractal theory one has the prediction h - Re"'', where the slight correction to 
the power is due to the intermittency of the energy dissipation (Crisanti et al 1993% b). In 
the GOY model, which seems to be multifractal (Jensen et al 1991) we have numerically 
verified that 

rP 1-1 - R ~ - 0 . 6 6 .  (8) 

The Lorenz theory and the results obtained in the shell model lead to very different pictures 
of predictability in turbulence and it is quite difficult to decide which is the correct one. Let 
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us remark that both (7). where Tp - LO/UO >> h-l, and (8) where T, - h-', are limiting 
cases of relation (5). It is worth stressing that the assumption of locality of the transfer 
mechanism of the perturbation in R-space is at the basis of (7). Non-local mechanism, 
which could be present in real fluids, would lead to predictability of the type of the shell 
model, where the chaotic nature of the evolution equation has the most relevant effect in 
determining the predictability properties. 

The same kind of problem arises when we consider real space instead of the Fourier 
k-space. We have thus decided to study a system of coupled maps on a onedimensional 
lattice which is the simplest model which exhibits the two different predictability scenarios. 

C Paladin and A Vulpimi 

The equations of our toy model are 

where f is a chaotic map of the interval [0, I] into itself, €0 = ~ ~ ~ ~ - ' . s j ,  and periodic 
boundary conditions xi = XI*N are assumed. 

We consider the case of nearest-neighbour interactions ( q = 0 if j > 2)  and of 
couplings of the type 

(10) 
CZ 

E . - -  f o r i 2 2  
J - j w  E I  = Ct and 

where the power (Y measures the strength of non-locality. 
There is no strong relation between the the evolution laws (9) and those of a fluid. 

However, the system of coupled maps can be regarded as a discrete (timespace) version 
of an integro-differential equation. Let us recall that the NavierStokes equations for 
an incompressible fluid can be written as an integro-differential equation with non-local 
interactions between the points of the fluid. 

In particular, we show here numerical results for the predictability using the logistic 
map 

f ( x ) = r x ( l - x )  mod 1 r = 4  

in equations (9). The predictability in the coupled map system seems not to be sensitive to 
the choice for f. For instance, we have observed the same qualitative behaviour using the 
logistic map with different values of the control parameter r or piecewise-linear maps of 
the interval into itself such as the Bernoulli map f = 2r mod 1 and asymmetric tent maps. 

The Lyapunov exponent of the coupled map system (9) is practically independent of N 
for both local and non-local interactions. This independence has also been found in other 
systems of coupled maps with local interactions (Kaneko 1989, Livi et a1 1987). 

The perturbation at initial time is performed at the centre of the lattice i = N / 2 ,  that is 

~ ~ x N N / z ( O ) ~  = 60 Sxi(0)  = 0 for i # N / 2 .  (11) 

We then look at the time Tp needed for the perturbation to reach a certain threshold 6, 
on the boundary of the lattice, that is, the maximum time f such that 16x1(t)I < 6-. 

In terms of the energy cascade in turbulent fluids which motivated our model, we are 
looking at the 'butterfly effect' starting from the centre of the lattice (which corresponds to 
the small-length scales) and arriving up to the first site (which is the analogue of the large 
scale). 
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For a system of maps coupled via a nearest-neighbour interaction, it is trivial to conclude 
that 6x1 ( t )  = 0 for timcs f < N / 2 .  Indeed, by a numerical iteration of (9) one observes 
that 8 x l ( t )  = 0 for times f < f' = C N .  More precisely, for any fixed 80 t 0, one 
has lSxl(t)l < 8, for t < f X  where f * / N  -+ C for N + 03. For longer times, the 
perturbation starts to grow as a consequence of the chaotic dynamics, 6x1 (t) - 80 eA(r-r). 
For local interactions, the predictability therefore is mainly determined by the waiting time 
t* which is roughly proportional to the system size N, as shown in figure 1, which shows 
the predictability time ( T p )  averaged over a large number of initial conditions. It can be 
fitted by the linear law 

(TP) = t i  + C N  (12) 

where the time tl - A-' is due to the exponential e m r  growth after the waiting time and can 
be neglected when the lattice is large enough. This result in real space is analogous to the 
Lorenz formula (7), where the Lyapunov exponent has no relevant role and the predictability 
is determined by the waiting time necessary for a perturbation to pass from the small- to 
the large-length scales through the inverse cascade mechanism. 

500 , , , , , , , , , ~, , , , , , . , , 
0 

300 

ZOO 

t 

Figure 1. Average predictability time (T,) versus N for: local coupling CI = 0.3 ( s q w ) ;  
non-local coupling C! = 0.3, CZ = 0.01 with a = 2 (crosses) and a = 3 (diamonds): mean 
field coupling ci = C z / N  and C2 = 0.3 (crossed squares). The initial perturbation is performed 
at the centre of the laltice (site i = N / 2 )  and has M ampiihlde lo-"; the maximum admitted 
error is S,, = 0.1. 

It is evident that the situation may be very different in the case of non-local interactions, 
since the perturbation on the centre of the lattice may propagate toward the boundaries 
without any time delay, due to the system size. The numerical integration of (9 )  shows that 
even for weak non-locality (e.g. C2 << CI and rather large a-values), the waiting time t* 
does not increase with the system size Nand 

(Ti) - ti - A-' .  (13) 

As shown in figure 1, the same qualitative behaviour is given by weakly non-local coupling 
and mean field interactions (cj = C 2 / N ) .  

On the contray, interactions with exponential decay or power-law decay with very 
large a give the same results as local interactions, suggesting that there is a threshold a, 
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between local and non-local predictability. It would be interesting to understand what the 
dependence of ac on C, and C2 is, as well as the dependence on the shape o f f .  However, 
it is very difficult to decide this issue on a numerical basis. 

In conclusion, the predictability time in spatially extended systems is given by two 
contributions: the waiting time t* which is the maximum time for which ISx(t)l < So, 
and the characteristic time f] - A-] associated with chaoticity degree. For non-local 
interactions, the waiting time is constant with respect to the size of the system N while for 
local interactions it is proportional to N. Let ns stress that in these results the nonlinear 
terms in the evolution of a small perturbation Sx(t) are quite important. One numerically 
observes that the waiting time f *  is not just the relaxation time TR of Sx on the tangent 
eigenvector. In fact, we find that T, is much larger than I*. 

Basically the mechanism of the perturbation growth is as follows. At the beginning the 
instability at the centre of the lattice Sx, with j e N / 2  increases exponentially at a rate 
given by the maximum Lyapunov exponent. It thus attains the saturation level in a time - A-]. Only after the saturation at the lattice centre, the perturbation starts to spread (either 
in a slow or in fast way, according to the nature of the coupling). In a time t' it reaches 
the boundary of the system. 

If one assumes that the perturbation is infinitesimal and considers the linearized 
evolution of Sx, i.e of the tangent vector, one gets a relaxation toward a typical stability 
eigenvector (corresponding to the maximum Lyapunov) whose components are of the order 
of N-'IZ exp(At) in a time T. >> f". The spatial spreading is thus accelerated by the 
nonlinear terms of the evolution law of Sx and as a consequence, the predictability time 
decreases in a substantial way. 

In physical phenomena, it is not clear whether interactions are local or non-local. In 
turbulence, for instance, one can think that non-local interactions among different points of 
the fluid arise as a consequence of the incompressibility condition, so that the problem of 
the relation between Lyapunov and predictability remains a crucial and controversial point. 
We have recently argued that the Lyapunov exponent is related to the predictability time on 
the basis of a numerical study of a shell model for the energy cascade in three-dimensional 
turbulence. As the Lyapunov exponent is found to be roughly proportional to the square root 
of the Reynolds number Re,  we expect that the predictability time also decreases as Re-'/2.  
On the other hand, Lorenz and other authors suggested that the predictability is substantially 
independent of Re, and is related to the lifetime of the largest eddies. Our results on coupled 
maps indicate that it  is not easy to decide the correct picture for the growth of instabilities 
without a careful analysis of the nature of interactions in the Navier-Stokes equations and 
that one needs an experimental or numerical verification to discriminate between the two 
different scenarios. 

G Paladin and A Vulpiani 
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